鉅大LARGE | 點擊量:1618次 | 2019年11月26日
納米材料在電池中有哪些應用技術?
納米材料在電池中的應用技術
1堿性鋅錳電池材料
11納米級γ-MnO2
夏熙等利用溶膠凝膠法、微乳法、低熱固相反應法合成制得納米級γMnO2用作堿錳電池正極材料。發現純度不佳,但與EMD以最佳配比混合,可大大提高第2電子當量的放電容量,也就是可出現混配效應。若制得的納米γMnO2純度高時,本身的放電容量即優于EMD。
12摻Bi改性納米MnO2
夏熙等通過加入Bi2O3合成得到改性MnO2,采用納米級和微米級改性摻BiMnO2混配的方法,放電容量都有不同程度的提高,并且存在一個最佳配比。通過摻Bi在充放電過程中形成一系列不同價態的BiMn復合物的共還原和共氧化,有效抑制Mn3O4的生成,可極大地改善電的可充性。
13納米級α-MnO2
采用固相反應法合成不含雜質陽離子的納米αMnO2,粒徑小于50nm,其電化學活性較高,放電容量比常規粒徑EMD更大,尤其適于重負荷放電,表現出良好的去極化性能,具有一定的開發和應用潛力。
2在MH/Ni電池中的應用
21納米級Ni(OH)2周震等人用沉淀轉化法制備了納米級Ni(OH)2,并發現納米級Ni(OH)2比微米級Ni(OH)2具有更高的電化學反應可逆性和更快速的活化能力。采用該材料制作的電極在電化學氧化還原過程中極化較小,充電效率高,活性物質利用更充分,而且顯示出放電電位較高的特點。趙力等人用微乳液法制備納米βNi(OH)2,粒徑為40~70nm。該方法較易控制納米顆粒粒徑大小,并且所制得的納米材料呈球型或橢球形,適用于某些對顆粒狀有特殊要求的場合,如作為氫氧化鎳電極的添加劑,按一定比例摻雜,可使Ni(OH)2的利用率顯著提高,尤其當放電電流較大時,利用率可提高12%。22納米晶貯氫合金
陳朝暉等利用電弧熔煉高能球磨法制備出納米晶LaNi5[6],平均粒徑約20nm,采用該材料制備的電極與粗晶LaNi5制備的電極相比,具有相當的放電容量,更好的活化特性,但其循環壽命較短。
下一篇:怎樣選擇和使用汽車蓄電池?