鉅大LARGE | 點擊量:1019次 | 2019年12月31日
如何優(yōu)化逆變器中的高電壓IGBT設計
隨著綠色電力運動勢頭不減,包括家電、照明和電動工具等應用,以至其他工業(yè)用設備都在盡可能地利用太陽能的優(yōu)點。為了有效地滿足這些產品的需求,電源設計師正通過最少數(shù)量的器件、高度可靠性和耐用性,以高效率把太陽能源轉換成所需的交流或者直流電壓。
要為這些應用以高效率生產所需的交流輸出電壓和電流,太陽能逆變器就需要控制、驅動器和輸出功率器件的正確組合。要達到這個目標,在這里展示了一個針對500W功率輸出進行優(yōu)化,并且擁有120V及60Hz頻率的單相正弦波的直流到交流逆變器設計。在這個設計中,有一個DC/DC電壓轉換器連接到光伏電池板,為這個功率轉換器提供200V直流輸入。不過在這里沒有提供太陽能電池板的詳細資料,因為那方面不是我們討論的重點。
現(xiàn)在,市場上有不同的高級功率開關,例如金屬氧化物半導體FET(MOSFET),雙極型三極管(BJT),以及絕綠柵雙極晶體管(IGBT)來轉換功率。然而,這個應用要達到最高的轉換效率和性能要求,就要選擇正確的功率晶體管。
多年來的調查和分析顯示,IGBT比其他功率晶體管有更多優(yōu)點,當中包括更高電流能力,利用電壓而非電流來進行柵極控制,以及能夠與一個超快速恢復二極管協(xié)同封裝來加快關斷速度。此外,工藝技術及器件結構的精細改進也使IGBT的開關性能得到相當?shù)母纳啤F渌麅?yōu)點還包括更好的通態(tài)性能,以及擁有高度耐用性和寬安全工作區(qū)。在考慮這些質量之后,這種功率逆變器設計就會選用高電壓IGBT,作為功率開關的必然之選。
因為這個設計所實施的逆變器拓撲屬于全橋,所以有關的太陽能逆變器采用了4個高電壓IGBT,如圖1所示。在這個電路中,Q1和Q2晶體管被指定為高側IGBT,而Q3和Q4則為低側功率器件。為了要保持總功率耗損處于低水平,但功率轉換則擁有高效率,設計師要在這個DC/AC逆變器解決方案正確應用低側和高側IGBT組合。
圖1采用4個IGBT的逆變器設計
溝道和平面IGBT
為了要同時把諧波和功率損耗降到最低,逆變器的高側IGBT利用了脈寬調制(PWM),同時低側功率器件就用60Hz進行變化。通過把PWM頻率定在20kHz或以上操作,高側IGBT有50/60Hz調制,輸出電感器L1和L2便可以保持實際可行的較少尺寸,提供有效的諧波濾波。再者,逆變器的可聽聲也可以降到最低,因為開關頻率已經高于人類的聽覺范圍。
我們研究過采用不同IGBT組合的各種開關技術后,認定能夠實現(xiàn)最低功率耗損和最高逆變器性能的最好組合,是高側晶體管利用超高速溝道IGBT,而低側部分就采用標準速度的平面器件。與快速和標準速度平面器件比較,開關頻率在20kHz的超高速溝道IGBT提供最低的總通態(tài)和開關功率損耗組合。高側晶體管的開關頻率為20kHz的另外一個優(yōu)點,是輸出電感器有合理的小尺寸,同時也容易進行濾波。在低側方面,我們把標準速度平面IGBT的開關頻率定在60Hz,使功率損耗可以保持在最低的水平。
當我們細看高電壓(600V)超高速溝道IGBT的開關性能,便會知道這些器件為20kHz的開關頻率進行了優(yōu)化。這使設計在相關的頻率下能夠保持最少的開關損耗,包括集電極到發(fā)射極的飽和電壓Vce(on)及總開關能量ETS。結果,總通態(tài)和開關功率損耗便可以維持在最低的水平。根據(jù)這一點,我們選擇了超高速溝道IGBT,例如,IRGB4062DPBF作為高側功率器件。這種超高速構道IGBT與一個超高速軟恢復二極管采用協(xié)同封裝,進一步確保低開關耗損。
下一篇:汽車電源轉換器的選購指南