鉅大LARGE | 點擊量:1857次 | 2019年08月20日
接觸電阻怎么測_接觸電阻影響因素
在顯微鏡下觀察連接器接觸件的表面,盡管鍍金層十分光滑,則仍能觀察到5-10微米的凸起部分。會看到插合的一對接觸件的接觸,并不整個接觸面的接觸,而是散布在接觸面上一些點的接觸。實際接觸面必然小于理論接觸面。根據表面光滑程度及接觸壓力大小,兩者差距有的可達幾千倍。實際接觸面可分為兩部分;一是真正金屬與金屬直接接觸部分。即金屬間無過渡電阻的接觸微點,亦稱接觸斑點,它是由接觸壓力或熱作用破壞界面膜后形成的。部分約占實際接觸面積的5-10%。二是通過接觸界面污染薄膜后相互接觸的部分。因為任何金屬都有返回原氧化物狀態的傾向。
實際上,在大氣中不存在真正潔凈的金屬表面,即使很潔凈的金屬表面,一旦暴露在大氣中,便會很快生成幾微米的初期氧化膜層。例如銅只要2-3分鐘,鎳約30分鐘,鋁僅需2-3秒鐘,其表面便可形成厚度約2微米的氧化膜層。即使特別穩定的貴金屬金,由于它的表面能較高,其表面也會形成一層有機氣體吸附膜。此外,大氣中的塵埃等也會在接觸件表面形成沉積膜。因而,從微觀分析任何接觸面都是一個污染面。
接觸電阻怎么測
接觸電阻就是電流流過閉合的接觸點對時的電阻。這類測量是在諸如連接器、繼電器和開關等元件上進行的。接觸電阻一般非常小其范圍在微歐姆到幾個歐姆之間。根據器件的類型和應用的情況,測量的方法可能會有所不同。ASTM的方法B539“測量電氣連接的接觸電阻”和MIL-STD-1344的方法3002“低信號電平接觸電阻”是通常用于測量接觸電阻的兩種方法。通常,一些基本的原則都采用開爾文四線法進行接觸電阻的測量。
測量方法:
圖4-42說明用來測試一個接點的接觸電阻的基本配置。使用具有四端測量能力的歐姆計,以避免在測量結果中計入引線電阻。將電流源的端子接到該接點對的兩端。取樣(Sense)端子則要連到距離該接點兩端電壓降最近的地方。其目的是避免在測量結果中計入測試引線和體積電阻(bulkresistance)產生的電壓降。體積電阻就是假定該接點為一塊具有相同幾何尺寸的金屬實體,而使其實際接觸區域的電阻為零時,整個接點所具有的電阻,設計成只有兩條引線的器件有的時候很難進行四線連接。器件的形式決定如何對其進行連接。一般,應當盡可能按照其正常使用的狀態來進行測試。在樣品上放置電壓探頭時不應當使其對樣品的機械連接產生影響。例如,焊接探頭可能會使接點發生不希望的變化。然而,在某些情況下,焊接可能是不可避免的。被測接點上的每個連接點都可能產生熱電動勢。然而,這種熱電動勢可以用電流反向或偏置補償的方法來補償。
干電路測試
通常,測試接點電阻的目的是確定接觸點氧化或其它表面薄膜積累是否增加了被測器件的電阻。即使在極短的時間內器件兩端的電壓過高,也會破壞這種氧化層或薄膜,從而破壞測試的有效性。擊穿薄膜所需要的電壓電平通常在30mV到100mV的范圍內。
在測試時流過接點的電流過大也能使接觸區域發生細微的物理變化。電流產生的熱量能夠使接觸點及其周圍區域變軟或熔解。結果,接點面積增大并導致其電阻降低。
為了避免這類問題,通常采用干電路的方法來進行接點電阻測試。干電路就是將其電壓和電流限制到不能引起接觸結點的物理和電學狀態發生變化電平的電路。這就意味著其開路電壓為20mV或更低,短路電流為100mA或更低。
由于所使用的測試電流很低,所以就需要非常靈敏的電壓表來測量這種通常在微伏范圍的電壓降。由于其它的測試方法可能會引起接點發生物理或電學的變化,所以對器件的干電路測量應當在進行其它的電學測試之前進行。
使用微歐姆計或數字多用表:
圖4-42示出使用Keithley580型微歐姆計、2010型數字多用表或2750型數字多用表數據采集系統進行四線接觸電阻測量的基本配置情況。這些儀器能夠采用偏置補償模式自動補償取樣電路中的熱電勢偏置,并且還具有內置的干電路測量能力。對于大多數的應用來說,微歐姆計或數字多用表足以用來進行接觸電阻的測量工作。如果短路電流或者被測電阻值比微歐姆計或數字多用表的技術指標小得很多,則必須使用納伏表加精密電流源的組合來進行。
使用納伏表和電流源:
圖4-43示出使用Keithley2182A型納伏表和2400系列數字源表儀器進行接觸電阻測量的測試配置情況。
2400系列儀器強制電流流過接點,而納伏表則測量接點兩端產生的電壓降。為了進行干電路測試,設置數字源表的鉗位電壓為20mV,這樣就把電路的開路電壓鉗位到20mV。為了保證鉗位電壓只出現在接點兩端,而不是出現在測試引線的兩端,該數字源表采用四線模式。在使用較大的電流時,這一點特別重要。因為和接點兩端的電壓降相比,測試引線兩端的電壓降可能會比較大。
為了避免發生瞬變現象,一定要先將電流源關閉,然后再把接點接入測試夾具或將其斷開。將一個100Ω的電阻器直接跨接在電流源的輸出端,能夠進一步降低瞬變現象。
可以使用電流反向法將熱電勢偏置降至最小。2182A的Delta模式與數字源表儀器配合可以自動地實現這種技術。在這種模式下,2182A自動地觸發電流源改變極性,然后對每一種極性觸發測量一個讀數。接著,2182A顯示“經過補償”的電壓值:
其中:I=測試電流的絕對值。
接觸電阻影響因素
接觸電阻主要受接觸件材料、正壓力、表面狀態、使用電壓和電流等因素影響。
1)接觸件材料
電連接器技術條件對不同材質制作的同規格插配接觸件,規定了不同的接觸電阻考核指標。如小圓形快速分離耐環境電連接器總規范GJB101-86規定,直徑為1mm的插配接觸件接觸電阻,銅合金≤5mΩ,鐵合金≤15mΩ。
2)正壓力
接觸件的正壓力是指彼此接觸的表面產生并垂直于接觸表面的力。隨正壓力增加,接觸微點數量及面積也逐漸增加,同時接觸微點從彈性變形過渡到塑性變形。由于集中電阻逐漸減小,而使接觸電阻降低。接觸正壓力主要取決于接觸件的幾何形狀和材料性能。
3)表面狀態
接觸件表面一是由于塵埃、松香、油污等在接點表面機械附著沉積形成的較松散的表膜,這層表膜由于帶有微粒物質極易嵌藏在接觸表面的微觀凹坑處,使接觸面積縮小,接觸電阻增大,且極不穩定。二是由于物理吸附及化學吸附所形成的污染膜,對金屬表面主要是化學吸附,它是在物理吸附后伴隨電子遷移而產生的。故對一些高可靠性要求的產品,如航天用電連接器必須要有潔凈的裝配生產環境條件,完善的清洗工藝及必要的結構密封措施,使用單位必須要有良好的貯存和使用操作環境條件。
4)使用電壓
使用電壓達到一定閾值,會使接觸件膜層被擊穿,而使接觸電阻迅速下降。但由于熱效應加速了膜層附近區域的化學反應,對膜層有一定的修復作用。于是阻值呈現非線性。在閾值電壓附近,電壓降的微小波動會引起電流可能二十倍或幾十倍范圍內變化。使接觸電阻發生很大變化,不了解這種非線性變化,就會在測試和使用接觸件時產生錯誤。
5)電流
當電流超過一定值時,接觸件界面微小點處通電后產生的焦耳熱作用而使金屬軟化或熔化,會對集中電阻產生影響,隨之降低接觸電阻。
上一篇:壓敏電阻有正負極嗎
下一篇:壓敏電阻型號的含義